Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 18(4): e0284150, 2023.
Article in English | MEDLINE | ID: covidwho-2296300

ABSTRACT

With the COVID-19 pandemic having caused unprecedented numbers of infections and deaths, large research efforts have been undertaken to increase our understanding of the disease and the factors which determine diverse clinical evolutions. Here we focused on a fully data-driven exploration regarding which factors (clinical or otherwise) were most informative for SARS-CoV-2 pneumonia severity prediction via machine learning (ML). In particular, feature selection techniques (FS), designed to reduce the dimensionality of data, allowed us to characterize which of our variables were the most useful for ML prognosis. We conducted a multi-centre clinical study, enrolling n = 1548 patients hospitalized due to SARS-CoV-2 pneumonia: where 792, 238, and 598 patients experienced low, medium and high-severity evolutions, respectively. Up to 106 patient-specific clinical variables were collected at admission, although 14 of them had to be discarded for containing ⩾60% missing values. Alongside 7 socioeconomic attributes and 32 exposures to air pollution (chronic and acute), these became d = 148 features after variable encoding. We addressed this ordinal classification problem both as a ML classification and regression task. Two imputation techniques for missing data were explored, along with a total of 166 unique FS algorithm configurations: 46 filters, 100 wrappers and 20 embeddeds. Of these, 21 setups achieved satisfactory bootstrap stability (⩾0.70) with reasonable computation times: 16 filters, 2 wrappers, and 3 embeddeds. The subsets of features selected by each technique showed modest Jaccard similarities across them. However, they consistently pointed out the importance of certain explanatory variables. Namely: patient's C-reactive protein (CRP), pneumonia severity index (PSI), respiratory rate (RR) and oxygen levels -saturation Sp O2, quotients Sp O2/RR and arterial Sat O2/Fi O2-, the neutrophil-to-lymphocyte ratio (NLR) -to certain extent, also neutrophil and lymphocyte counts separately-, lactate dehydrogenase (LDH), and procalcitonin (PCT) levels in blood. A remarkable agreement has been found a posteriori between our strategy and independent clinical research works investigating risk factors for COVID-19 severity. Hence, these findings stress the suitability of this type of fully data-driven approaches for knowledge extraction, as a complementary to clinical perspectives.


Subject(s)
COVID-19 , Pneumonia , Humans , SARS-CoV-2 , Pandemics , Prognosis , Retrospective Studies
2.
Metabolites ; 12(12)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2143377

ABSTRACT

After SARS-CoV-2 infection, the molecular phenoreversion of the immunological response and its associated metabolic dysregulation are required for a full recovery of the patient. This process is patient-dependent due to the manifold possibilities induced by virus severity, its phylogenic evolution and the vaccination status of the population. We have here investigated the natural history of COVID-19 disease at the molecular level, characterizing the metabolic and immunological phenoreversion over time in large cohorts of hospitalized severe patients (n = 886) and non-hospitalized recovered patients that self-reported having passed the disease (n = 513). Non-hospitalized recovered patients do not show any metabolic fingerprint associated with the disease or immune alterations. Acute patients are characterized by the metabolic and lipidomic dysregulation that accompanies the exacerbated immunological response, resulting in a slow recovery time with a maximum probability of around 62 days. As a manifestation of the heterogeneity in the metabolic phenoreversion, age and severity become factors that modulate their normalization time which, in turn, correlates with changes in the atherogenesis-associated chemokine MCP-1. Our results are consistent with a model where the slow metabolic normalization in acute patients results in enhanced atherosclerotic risk, in line with the recent observation of an elevated number of cardiovascular episodes found in post-COVID-19 cohorts.

3.
Int J Infect Dis ; 115: 39-47, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1517206

ABSTRACT

OBJECTIVE: To analyse differences in clinical presentation and outcome between bacteraemic pneumococcal community-acquired pneumonia (B-PCAP) and sSvere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pneumonia. METHODS: This observational multi-centre study was conducted on patients hospitalized with B-PCAP between 2000 and 2020 and SARS-CoV-2 pneumonia in 2020. Thirty-day survival, predictors of mortality, and intensive care unit (ICU) admission were compared. RESULTS: In total, 663 patients with B-PCAP and 1561 patients with SARS-CoV-2 pneumonia were included in this study. Patients with B-PCAP had more severe disease, a higher ICU admission rate and more complications. Patients with SARS-CoV-2 pneumonia had higher in-hospital mortality (10.8% vs 6.8%; P=0.004). Among patients admitted to the ICU, the need for invasive mechanical ventilation (69.7% vs 36.2%; P<0.001) and mortality were higher in patients with SARS-CoV-2 pneumonia. In patients with B-PCAP, the predictive model found associations between mortality and systemic complications (hyponatraemia, septic shock and neurological complications), lower respiratory reserve and tachypnoea; chest pain and purulent sputum were protective factors in these patients. In patients with SARS-CoV-2 pneumonia, mortality was associated with previous liver and cardiac disease, advanced age, altered mental status, tachypnoea, hypoxaemia, bilateral involvement, pleural effusion, septic shock, neutrophilia and high blood urea nitrogen; in contrast, ≥7 days of symptoms was a protective factor in these patients. In-hospital mortality occurred earlier in patients with B-PCAP. CONCLUSIONS: Although B-PCAP was associated with more severe disease and a higher ICU admission rate, the mortality rate was higher for SARS-CoV-2 pneumonia and deaths occurred later. New prognostic scales and more effective treatments are needed for patients with SARS-CoV-2 pneumonia.


Subject(s)
COVID-19 , Pneumonia, Pneumococcal , Humans , Intensive Care Units , Pneumonia, Pneumococcal/complications , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL